
A Beginner’s Guide
to

MATLAB*

 -3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3

-6

-4

-2

0

2

4

6

8

xy

Christos Xenophontos

Department of Mathematical Sciences

Loyola College

* MATLAB is a registered trademark of The MathWorks Inc. A first draft of this document appeared as Technical
Report 98-02, Department of Mathematics & Computer Science, Clarkson University.

 2

TABLE OF CONTENTS

1. Introduction Page

1.1 MATLAB at Loyola College 3
1.2 How to read this tutorial 4

2. MATLAB Basics

2.1 The basic features 4
2.2 Vectors and matrices 7
2.3 Built-in functions 13
2.4 Plotting 22

3. Programming in MATLAB

3.1 M-files: Scripts and functions 27
3.2 Loops 29
3.3 If statement 33

4. Additional Topics

4.1 Polynomials in MATLAB 36
4.2 Numerical Methods 38

5. Closing Remarks and References 42

 3

1. INTRODUCTION

MATLAB, which stands for MATrix LABoratory, is a state-of-the-art mathematical software
package, which is used extensively in both academia and industry. It is an interactive program
for numerical computation and data visualization, which along with its programming capabilities
provides a very useful tool for almost all areas of science and engineering. Unlike other
mathematical packages, such as MAPLE or MATHEMATICA, MATLAB cannot perform
symbolic manipulations without the use of additional Toolboxes. It remains however, one of the
leading software packages for numerical computation.

As you might guess from its name, MATLAB deals mainly with matrices. A scalar is a 1-by-1
matrix and a row vector of length say 5, is a 1-by-5 matrix. We will elaborate more on these and
other features of MATLAB in the sections that follow. One of the many advantages of
MATLAB is the natural notation used. It looks a lot like the notation that you encounter in a
linear algebra course. This makes the use of the program especially easy and it is what makes
MATLAB a natural choice for numerical computations.

The purpose of this tutorial is to familiarize the beginner to MATLAB, by introducing the basic
features and commands of the program. It is in no way a complete reference and the reader is
encouraged to further enhance his or her knowledge of MATLAB by reading some of the
suggested references at the end of this guide.

1.1 MATLAB at Loyola College

MATLAB runs from ANY networked computer (e.g. your dorm room, the Math Lab in KH 318,
etc). To access it, go to the MetaFrame Presentation Server, located at
http://www.loyola.edu/moresoftware/ , and login using your Groupwise username and password
- if your Groupwise password will not work then try you student ID number as a password. Once
you login you will see a folder with applications, MATLAB being one of them. Double-click on
the MATLAB icon and off you go ... Note: It is possible that the first time you do this, you may
have to install some client software on your PC. Simply follow the instructions on the webpage
(after you login) and you should be fine.

The program will start in a new window and once you see the prompt (») you will be ready to
begin … The current (working) sub-directory is by default d:\Applications\matlabR14. You
should not be saving any of your work in the default directory. Instead, you should switch to the
G:\ drive that contains your account, by issuing the command

>> cd g:\

from within MATLAB. Talk to your professor for further instructions on how and where to save
your work.

After you are done with MATLAB don’t forget to logout of the MetaFrame Presentation Server.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 4

1.2 How to read this tutorial

In the sections that follow, the MATLAB prompt (») will be used to indicate where the
commands are entered. Anything you see after this prompt denotes user input (i.e. a command)
followed by a carriage return (i.e. the “enter” key). Often, input is followed by output so unless
otherwise specified the line(s) that follow a command will denote output (i.e. MATLAB’s
response to what you typed in). MATLAB is case-sensitive, which means that a + B is not the
same as a + b. Different fonts, like the ones you just witnessed, will also be used to
simulate the interactive session. This can be seen in the example below:

e.g. MATLAB can work as a calculator. If we ask MATLAB to add two numbers, we get the
answer we expect.

» 3 + 4

ans =

 7

As we will see, MATLAB is much more than a “fancy” calculator. In order to get the most out
this tutorial you are strongly encouraged to try all the commands introduced in each section and
work on all the recommended exercises. This usually works best if after reading this guide once,
you read it again (and possibly again and again) in front of a computer.

2. MATLAB BASICS

2.1 The basic features

Let us start with something simple, like defining a row vector with components the numbers 1, 2,
3, 4, 5 and assigning it a variable name, say x.

» x = [1 2 3 4 5]

x =
 1 2 3 4 5

Note that we used the equal sign for assigning the variable name x to the vector, brackets to
enclose its entries and spaces to separate them. (Just like you would using the linear algebra
notation). We could have used commas (,) instead of spaces to separate the entries, or even a
combination of the two. The use of either spaces or commas is essential!

To create a column vector (MATLAB distinguishes between row and column vectors, as it
should) we can either use semicolons (;) to separate the entries, or first define a row vector and
take its transpose to obtain a column vector. Let us demonstrate this by defining a column
vector y with entries 6, 7, 8, 9, 10 using both techniques.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 5

» y = [6;7;8;9;10]

y =
 6
 7
 8
 9
 10

» y = [6,7,8,9,10]

y =
 6 7 8 9 10

» y'

ans =
 6
 7
 8
 9
 10

Let us make a few comments. First, note that to take the transpose of a vector (or a matrix for
that matter) we use the single quote ('). Also note that MATLAB repeats (after it processes)
what we typed in. Sometimes, however, we might not wish to “see” the output of a specific
command. We can suppress the output by using a semicolon (;) at the end of the command line.
Finally, keep in mind that MATLAB automatically assigns the variable name ans to anything
that has not been assigned a name. In the example above, this means that a new variable has
been created with the column vector entries as its value. The variable ans, however, gets
recycled and every time we type in a command without assigning a variable, ans gets that value.

It is good practice to keep track of what variables are defined and occupy our workspace. Due to
the fact that this can be cumbersome, MATLAB can do it for us. The command whos gives all
sorts of information on what variables are active.

» whos

Name Size Elements Bytes Density Complex

ans 5 by 1 5 40 Full No
x 1 by 5 5 40 Full No
y 1 by 5 5 40 Full No

Grand total is 15 elements using 120 bytes

A similar command, called who, only provides the names of the variables that are active.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 6

» who

Your variables are:

ans x y

If we no longer need a particular variable we can “erase” it from memory using the command
clear variable_name. Let us clear the variable ans and check that we indeed did so.

» clear ans
» who

Your variables are:

x y

The command clear used by itself, “erases” all the variables from the memory. Be careful, as
this is not reversible and you do not have a second chance to change your mind.

You may exit the program using the quit command. When doing so, all variables are lost.
However, invoking the command save filename before exiting, causes all variables to be
written to a binary file called filename.mat. When we start MATLAB again, we may
retrieve the information in this file with the command load filename. We can also create an
ascii (text) file containing the entire MATLAB session if we use the command diary
filename at the beginning and at the end of our session. This will create a text file called
filename (with no extension) that can be edited with any text editor, printed out etc. This file
will include everything we typed into MATLAB during the session (including error messages
but excluding plots). We could also use the command save filename at the end of our
session to create the binary file described above as well as the text file that includes our work.

One last command to mention before we start learning some more interesting things about
MATLAB, is the help command. This provides help for any existing MATLAB command.
Let us try this command on the command who.

» help who

 WHO List current variables.
 WHO lists the variables in the current workspace.
 WHOS lists more information about each variable.
 WHO GLOBAL and WHOS GLOBAL list the variables in the

global workspace.

Try using the command help on itself!

On a PC, help is also available from the Window Menus. Sometimes it is easier to look up a
command from the list provided there, instead of using the command line help.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Comment on Text
Save workspace as, open workspace as

 7

2.2 Vectors and matrices

We have already seen how to define a vector and assign a variable name to it. Often it is useful
to define vectors (and matrices) that contain equally spaced entries. This can be done by
specifying the first entry, an increment, and the last entry. MATLAB will automatically figure
out how many entries you need and their values. For example, to create a vector whose entries
are 0, 1, 2, 3, …, 7, 8, you can type

» u = [0:8]

u =
 0 1 2 3 4 5 6 7 8

Here we specified the first entry 0 and the last entry 8, separated by a colon (:). MATLAB
automatically filled-in the (omitted) entries using the (default) increment 1. You could also
specify an increment as is done in the next example.

To obtain a vector whose entries are 0, 2, 4, 6, and 8, you can type in the following line:

» v = [0:2:8]

v =
 0 2 4 6 8

Here we specified the first entry 0, the increment value 2, and the last entry 8. The two colons (:
) “tell” MATLAB to fill in the (omitted) entries using the specified increment value.

MATLAB will allow you to look at specific parts of the vector. If you want, for example, to only
look at the first 3 entries in the vector v, you can use the same notation you used to create the
vector:

» v(1:3)

ans =
 0 2 4

Note that we used parentheses, instead of brackets, to refer to the entries of the vector. Since we
omitted the increment value, MATLAB automatically assumes that the increment is 1. The
following command lists the first 4 entries of the vector v, using the increment value 2 :

» v(1:2:4)

ans =

 0 4

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 8

Defining a matrix is similar to defining a vector. To define a matrix A, you can treat it like a
column of row vectors. That is, you enter each row of the matrix as a row vector (remember to
separate the entries either by commas or spaces) and you separate the rows by semicolons (;).

» A = [1 2 3; 3 4 5; 6 7 8]

A =
 1 2 3
 3 4 5
 6 7 8

We can avoid separating each row with a semicolon if we use a carriage return instead. In other
words, we could have defined A as follows

» A = [
1 2 3
3 4 5
6 7 8]

A =
 1 2 3
 3 4 5
 6 7 8

which is perhaps closer to the way we would have defined A by hand using the linear algebra
notation.

You can refer to a particular entry in a matrix by using parentheses. For example, the number 5
lies in the 2nd row, 3rd column of A, thus

» A(2,3)

ans =
 5

The order of rows and columns follows the convention adopted in the linear algebra notation.
This means that A(2,3) refers to the number 5 in the above example and A(3,2) refers to the
number 7, which is in the 3rd row, 2nd column.

Note MATLAB’s response when we ask for the entry in the 4th row, 1st column.

» A(4,1)
??? Index exceeds matrix dimensions.

As expected, we get an error message. Since A is a 3-by-3 matrix, there is no 4th row and
MATLAB realizes that. The error messages that we get from MATLAB can be quite
informative when trying to find out what went wrong. In this case MATLAB told us exactly
what the problem was.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 9

We can “extract” submatrices using a similar notation as above. For example to obtain the
submatrix that consists of the first two rows and last two columns of A we type

» A(1:2,2:3)

ans =
 2 3
 4 5

We could even extract an entire row or column of a matrix, using the colon (:) as follows.
Suppose we want to get the 2nd column of A. We basically want the elements [A(1,2)
A(2,2) A(3,2)]. We type

» A(:,2)

ans =
 2
 4
 7

where the colon was used to tell MATLAB that all the rows are to be used. The same can be
done when we want to extract an entire row, say the 3rd one.

» A(3,:)

ans =
 6 7 8

Define now another matrix B, and two vectors s and t that will be used in what follows.

» B = [
-1 3 10
-9 5 25
0 14 2]

B =
 -1 3 10
 -9 5 25
 0 14 2

» s = [-1 8 5]

s =
 -1 8 5

» t = [7;0;11]

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 10

t =
 7
 0
 11

The real power of MATLAB is the ease in which you can manipulate your vectors and matrices.
For example, to subtract 1 from every entry in the matrix A we type

» A-1

ans =
 0 1 2
 2 3 4
 5 6 7

It is just as easy to add (or subtract) two compatible matrices (i.e. matrices of the same size).

» A+B

ans =
 0 5 13
 -6 9 30
 6 21 10

The same is true for vectors.

» s-t
??? Error using ==> -
Matrix dimensions must agree.

This error was expected, since s has size 1-by-3 and t has size 3-by-1. We will not get an error if
we type

» s-t'

ans =
 -8 8 -6

since by taking the transpose of t we make the two vectors compatible.

We must be equally careful when using multiplication.

» B*s
??? Error using ==> *
Inner matrix dimensions must agree.

» B*t

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 11

ans =

 103
 212
 22

Another important operation that MATLAB can perform with ease is “matrix division”. If M is
an invertible† square matrix and b is a compatible vector then

x = M\b is the solution of M x = b and
x = b/M is the solution of x M = b.

Let us illustrate the first of the two operations above with M = B and b = t.

» x=B\t

x =
 2.4307
 0.6801
 0.7390

x is the solution of B x = t as can be seen in the multiplication below.

» B*x

ans =
 7.0000
 0.0000
 11.0000

Since x does not consist of integers, it is worth while mentioning here the command format
long. MATLAB only displays four digits beyond the decimal point of a real number unless we
use the command format long, which tells MATLAB to display more digits.

» format long

» x

x =
 2.43071593533487
 0.68013856812933
 0.73903002309469

On a PC the command format long can also be used through the Window Menus.

† Recall that a matrix n nM ×∈ is called invertible if 0 0 nMx x x= ⇒ = ∀ ∈ .

user
Highlight

user
Highlight

user
Comment on Text
Solving equations:

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 12

There are many times when we want to perform an operation to every entry in a vector or matrix.
MATLAB will allow us to do this with “element-wise” operations.

For example, suppose you want to multiply each entry in the vector s with itself. In other words,
suppose you want to obtain the vector s2 = [s(1)*s(1), s(2)*s(2), s(3)*s(3)].

The command s*s will not work due to incompatibility. What is needed here is to tell
MATLAB to perform the multiplication element-wise. This is done with the symbols ".*". In
fact, you can put a period in front of most operators to tell MATLAB that you want the operation
to take place on each entry of the vector (or matrix).

» s*s
??? Error using ==> *
Inner matrix dimensions must agree.

» s.*s

ans =
 1 64 25

The symbol " .^ " can also be used since we are after all raising s to a power. (The period is
needed here as well.)

» s.^2

ans =
 1 64 25

The table below summarizes the operators that are available in MATLAB.

+ addition
- subtraction
* multiplication
^ power
' transpose
\ left division
/ right division

Remember that the multiplication, power and division operators can be used in conjunction with
a period to specify an element-wise operation.

Exercises

Create a diary session called sec2_2 in which you should complete the following exercises.
Define

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 13

[]A b a=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − −

2 9 0 0
0 4 1 4
7 5 5 1
7 8 7 4

1
6
0
9

3 2 4 5, ,

1. Calculate the following (when defined)

(a) A ⋅ b (b) a + 4 (c) b ⋅ a (d) a ⋅ bT (e) A ⋅ aT

2. Explain any differences between the answers that MATLAB gives when you type in A*A,
A^2 and A.^2.

3. What is the command that isolates the submatrix that consists of the 2nd to 3rd rows of the

matrix A?

4. Solve the linear system A x = b for x. Check your answer by multiplication.

Edit your text file to delete any errors (or typos) and hand in a readable printout.

2.3 Built-in functions

There are numerous built-in functions (i.e. commands) in MATLAB. We will mention a few of
them in this section by separating them into categories.

Scalar Functions

Certain MATLAB functions are essentially used on scalars, but operate element-wise when
applied to a matrix (or vector). They are summarized in the table below.

sin trigonometric sine
cos trigonometric cosine
tan trigonometric tangent
asin trigonometric inverse sine (arcsine)
acos trigonometric inverse cosine (arccosine)
atan trigonometric inverse tangent (arctangent)
exp exponential
log natural logarithm
abs absolute value
sqrt square root
rem remainder
round round towards nearest integer
floor round towards negative infinity
ceil round towards positive infinity

user
Highlight

user
Highlight

 14

Even though we will illustrate some of the above commands in what follows, it is strongly
recommended to get help on all of them to find out exactly how they are used.

The trigonometric functions take as input radians. Since MATLAB uses pi for the number
π = 3.1415…

» sin(pi/2)

ans =
 1

» cos(pi/2)

ans =
 6.1230e-017

The sine of π/2 is indeed 1 but we expected the cosine of π/2 to be 0. Well, remember that
MATLAB is a numerical package and the answer we got (in scientific notation) is very close to
0 (6.1230e-017 = 6.1230×10 –17 ≈ 0).

Since the exp and log commands are straight forward to use, let us illustrate some of the other
commands. The rem command gives the remainder of a division. So the remainder of 12
divided by 4 is zero

» rem(12,4)

ans =
 0

and the remainder of 12 divided by 5 is 2.

» rem(12,5)

ans =
 2

The floor, ceil and round commands are illustrated below.

» floor(1.4)

ans =
 1

» ceil(1.4)

ans =
 2

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 15

» round(1.4)

ans =

 1

Keep in mind that all of the above commands can be used on vectors with the operation taking
place element-wise. For example, if x = [0, 0.1, 0.2, . . ., 0.9, 1], then y = exp(x) will produce
another vector y , of the same length as x, whose entries are given by y = [e0, e0.1, e0.2, . . ., e1].

» x = [0:0.1:1]

x =

Columns 1 through 7

0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

Columns 8 through 11

0.7000 0.8000 0.9000 1.0000

» y = exp(x)

y =

Columns 1 through 7

1.0000 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221

Columns 8 through 11

2.0138 2.2255 2.4596 2.7183

This is extremely useful when plotting data. See Section 2.4 ahead for more details on plotting.

Also, note that MATLAB displayed the results as 1-by-11 matrices (i.e. row vectors of length
11). Since there was not enough space on one line for the vectors to be displayed, MATLAB
reports the column numbers.

Vector Functions

Other MATLAB functions operate essentially on vectors returning a scalar value. Some of these
functions are given in the table below.

max largest component
min smallest component
length length of a vector

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 16

sort sort in ascending order
sum sum of elements
prod product of elements
median median value
mean mean value
std standard deviation

Once again, it is strongly suggested to get help on all the above commands. Some are
illustrated below.

Let z be the following row vector.

» z = [0.9347,0.3835,0.5194,0.8310]

z =
 0.9347 0.3835 0.5194 0.8310

Then

» max(z)

ans =
 0.9347

» min(z)

ans =
 0.3835

» sort(z)

ans =
 0.3835 0.5194 0.8310 0.9347

» sum(z)

ans =
 2.6686

» mean(z)

ans =
 0.6671

The above (vector) commands can also be applied to a matrix. In this case, they act in a column-
by-column fashion to produce a row vector containing the results of their application to each
column. The example below illustrates the use of the above (vector) commands on matrices.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 17

Suppose we wanted to find the maximum element in the following matrix.

» M = [
0.7012,0.2625,0.3282
0.9103,0.0475,0.6326
0.7622,0.7361,0.7564];

If we used the max command on M, we will get the row in which the maximum element lies
(remember the vector functions act on matrices in a column-by-column fashion).

» max(M)

ans =
 0.9103 0.7361 0.7564

To isolate the largest element, we must use the max command on the above row vector. Taking
advantage of the fact that MATLAB assigns the variable name ans to the answer we obtained,
we can simply type

» max(ans)

ans =
 0.9103

The two steps above can be combined into one in the following.

» max(max(M))

ans =
 0.9103

Combining MATLAB commands can be very useful when programming complex algorithms
where we do not wish to see or access intermediate results. More on this, and other
programming features of MATLAB in Section 3 ahead.

Matrix Functions

Much of MATLAB’s power comes from its matrix functions. These can be further separated
into two sub-categories. The first one consists of convenient matrix building functions, some of
which are given in the table below.

eye identity matrix
zeros matrix of zeros
ones matrix of ones
diag extract diagonal of a matrix or create diagonal matrices
triu upper triangular part of a matrix
tril lower triangular part of a matrix
rand randomly generated matrix

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 18

Make sure you ask for help on all the above commands.

To create the identity matrix of size 4 (i.e. a square 4-by-4 matrix with ones on the main diagonal
and zeros everywhere else) we use the command eye.

» eye(4,4)

ans =
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

The numbers in parenthesis indicates the size of the matrix. When creating square matrices, we
can specify only one input referring to size of the matrix. For example, we could have obtained
the above identity matrix by simply typing eye(4). The same is true for the matrix building
functions below.

Similarly, the command zeros creates a matrix of zeros and the command ones creates a
matrix of ones.

» zeros(2,3)

ans =
 0 0 0
 0 0 0

» ones(2)

ans =
 1 1
 1 1

We can create a randomly generated matrix using the rand command. (The entries will be
uniformly distributed between 0 and 1.)

» C = rand(5,4)

C =
 0.2190 0.3835 0.5297 0.4175
 0.0470 0.5194 0.6711 0.6868
 0.6789 0.8310 0.0077 0.5890
 0.6793 0.0346 0.3834 0.9304
 0.9347 0.0535 0.0668 0.8462

The commands triu and tril, extract the upper and lower part of a matrix, respectively. Let
us try them on the matrix C defined above.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 19

» triu(C)

ans =

 0.2190 0.3835 0.5297 0.4175
 0 0.5194 0.6711 0.6868
 0 0 0.0077 0.5890
 0 0 0 0.9304
 0 0 0 0

» tril(C)

ans =
 0.2190 0 0 0
 0.0470 0.5194 0 0
 0.6789 0.8310 0.0077 0
 0.6793 0.0346 0.3834 0.9304
 0.9347 0.0535 0.0668 0.8462

Once the extraction took place, the “empty” positions in the new matrices are automatically
filled with zeros.

As mentioned earlier, the command diag has two uses. The first use is to extract a diagonal of
a matrix, e.g. the main diagonal. Suppose D is the matrix given below. Then, diag(D)
produces a column vector, whose components are the elements of D that lie on its main diagonal.

» D = [
0.9092 0.5045 0.9866
0.0606 0.5163 0.4940
0.9047,0.3190,0.2661];

» diag(D)

ans =
 0.9092
 0.5163
 0.2661

The second use is to create diagonal matrices. For example,

» diag([0.9092;0.5163;0.2661])

ans =
 0.9092 0 0
 0 0.5163 0
 0 0 0.2661

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 20

creates a diagonal matrix whose non-zero entries are specified by the vector given as input. (A
short cut to the above construction is diag(diag(D))).
This command is not restricted to the main diagonal of a matrix; it works on off diagonals as
well. See help diag for more information.

Let us now summarize some of the commands in the second sub-category of matrix functions.

size size of a matrix
det determinant of a square matrix
inv inverse of a matrix
rank rank of a matrix
rref reduced row echelon form
eig eigenvalues and eigenvectors
poly characteristic polynomial
norm norm of matrix (1-norm, 2-norm, ∞ -norm)
cond condition number in the 2-norm
lu LU factorization
qr QR factorization
chol Cholesky decomposition
svd singular value decomposition

Don’t forget to get help on the above commands. To illustrate a few of them, define the
following matrix.

» A = [9,7,0;0,8,6;7,1,-6]

A =
 9 7 0
 0 8 6
 7 1 -6

» size(A)

ans =
 3 3

» det(A)

ans =
 -192

Since the determinant is not zero, the matrix is invertible.

» inv(A)

ans =
 0.2812 -0.2187 -0.2187
 -0.2187 0.2812 0.2812
 0.2917 -0.2083 -0.3750

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 21

We can check our result by verifying that AA–1 = I and A–1A = I .

» A*inv(A)

ans =
 1.0000 0.0000 0.0000
 0.0000 1.0000 0.0000
 0.0000 0.0000 1.0000

» inv(A)*A

ans =
 1.0000 0.0000 0
 0.0000 1.0000 0
 0.0000 0 1.0000

Let us comment on why MATLAB uses both 0’s and 0.0000’s in the answer above. Recall that
we are dealing with a numerical package that uses numerical algorithms to perform the
operations we ask for. Hence, the use of floating point (vs. exact) arithmetic causes the
“discrepancy” in the results. From a practical point of view, 0 and 0.0000 are the same.

The eigenvalues and eigenvectors of A (i.e. the numbers λ and vectors x that satisfy
Ax = λx) can be obtained through the eig command.

» eig(A)

ans =
 12.6462
 3.1594
 -4.8055

produces a column vector with the eigenvalues and

» [X,D]=eig(A)

X =
 -0.8351 -0.6821 0.2103
 -0.4350 0.5691 -0.4148
 -0.3368 -0.4592 0.8853

D =
 12.6462 0 0
 0 3.1594 0
 0 0 -4.8055

produces a diagonal matrix D with the eigenvalues on the main diagonal, and a full matrix X
whose columns are the corresponding eigenvectors.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Re: Highlight

 22

Exercises

Create a diary session called sec2_3 in which you should complete the following exercises
using MATLAB commands. When applicable, use the matrix A and the vectors b, a that were
defined in the previous section’s exercises.

1. Construct a randomly generated 2-by-2 matrix of positive integers.

2. Find the maximum and minimum elements in the matrix A.

3. Sort the values of the vector b.

4. (a) Find the eigenvalues and eigenvectors of the matrix B = A–1. Store the eigenvalues in a

column vector you should name lambda.
(b) With I the 4-by-4 identity matrix, calculate the determinant of the matrix
B – lambdaj I , for j = 1, 2, 3, 4. (Note: lambda1 is the first eigenvalue, lambda2 is the
second eigenvalue etc.)

2.4 Plotting

We end our discussion on the basic features of MATLAB by introducing the commands for data
visualization (i.e. plotting). By typing help plot you can see the various capabilities of this
main command for two-dimensional plotting, some of which will be illustrated below.

If x and y are two vectors of the same length then plot(x,y) plots x versus y.

For example, to obtain the graph of y = cos(x) from – π to π, we can first define the vector x with
components equally spaced numbers between – π and π, with increment, say 0.01.

» x=-pi:0.01:pi;

We placed a semicolon at the end of the input line to avoid seeing the (long) output.
Note that the smallest the increment, the “smoother” the curve will be.
1 – 2
Next, we define the vector y

» y=cos(x);

(using a semicolon again) and we ask for the plot

» plot(x,y)

At this point a new window will open on our desktop in which the graph (as seen below) will
appear.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 23

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

It is good practice to label the axis on a graph and if applicable indicate what each axis
represents. This can be done with the xlabel and ylabel commands.

» xlabel('x')
» ylabel('y=cos(x)')

Inside parentheses, and enclosed within single quotes, we type the text that we wish to be
displayed along the x and y axis, respectively.

We could even put a title on top using

» title('Graph of cosine from - \pi to \pi')

as long as we remember to enclose the text in parentheses within single quotes. The back-slash
(\) in front of pi allows the user to take advantage of LaTeX commands. If you are not
familiar with the mathematical typesetting software LaTeX (and its commands), ignore the
present commend and simply type

» title('Graph of cosine from -pi to pi')

Both graphs are shown below.

These commands can be invoked even after the plot window has been opened and MATLAB
will make all the necessary adjustments to the display.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 24

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y=
co

s(
x)

Graph of cosine from - π to π

-4 -3 -2 -1 0 1 2 3 4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Graph of cosine from -pi to pi

Various line types, plot symbols and colors can be used. If these are not specified (as in the case
above) MATLAB will assign (and cycle through) the default ones as given in the table below.

 y yellow . point
 m magenta o circle
 c cyan x x-mark
 r red + plus
 g green - solid
 b blue * star
 w white : dotted
 k black -. dashdot
 -- dashed

So, to obtain the same graph but in green, we type

» plot(x,y,’g’)

where the third argument indicating the color, appears within single quotes. We could get a
dashed line instead of a solid one by typing

» plot(x,y,’--’)

or even a combination of line type and color, say a blue dotted line by typing

» plot(x,y,’b:’)

Multiple curves can appear on the same graph. If for example we define another vector

» z = sin(x);

we can get both graphs on the same axis, distinguished by their line type, using

» plot(x,y,'r--',x,z,'b:')

The resulting graph can be seen below, with the red dashed line representing y = cos(x) and the
blue dotted line representing z = sin(x).

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 25

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

When multiple curves appear on the same axis, it is a good idea to create a legend to label and
distinguish them. The command legend does exactly this.

» legend('cos(x)','sin(x)')

The text that appears within single quotes as input to this command, represents the legend labels.
We must be consistent with the ordering of the two curves, so since in the plot command we
asked for cosine to be plotted before sine, we must do the same here.

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
cos(x)
sin(x)

At any point during a MATLAB session, you can obtain a hard copy of the current plot by either
issuing the command print at the MATLAB prompt, or by using the command menus on the
plot window. In addition, MATLAB plots can by copied and pasted (as pictures) in your
favorite word processor (such as Microsoft Word). This can be achieved using the Edit menu on
the figure window.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 26

Another nice feature that can be used in conjunction with plot is the command grid, which
places grid lines to the current axis (just like you have on graphing paper). Type help grid
for more information.

Other commands for data visualization that exist in MATLAB include

subplot create an array of (tiled) plots in the same window
loglog plot using log-log scales
semilogx plot using log scale on the x-axis
semilogy plot using log scale on the y-axis
surf 3-D shaded surface graph
surfl 3-D shaded surface graph with lighting
mesh 3-D mesh surface

It is left to the reader to further investigate the above commands through MATLAB’s help
command. We illustrate here how to obtain one of the surface pictures on the cover of this
guide:

>> [x,y] = meshgrid(-3:.1:3,-3:.1:3);
>> z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
 - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
 - 1/3*exp(-(x+1).^2 - y.^2);
>> surf(z)
>> xlabel('x')
>> ylabel('y')
>> zlabel('z')
>> title('Peaks')

0
10

20
30

40
50

60
70

0

20

40

60

80
-8

-6

-4

-2

0

2

4

6

8

10

x

Peaks

y

z

Type help meshgrid, help surf and help peaks for more information on the above
surface.

user
Highlight

user
Highlight

 27

Exercises

Obtain a hard copy of the plot of the functions f (x) = x2, g (x) = x3 for x = –1, …,1 on the same
axis. Label the x and y axes and create a legend indicating which graph is which.

3. PROGRAMMING IN MATLAB

3.1 M-files: Scripts and functions

To take advantage of MATLAB’s full capabilities, we need to know how to construct long (and
sometimes complex) sequences of statements. This can be done by writing the commands in a
file and calling it from within MATLAB. Such files are called “m-files” because they must have
the filename extension “.m”. This extension is required in order for these files to be interpreted
by MATLAB.

There are two types of m-files: script files and function files. Script files contain a sequence of
usual MATLAB commands, that are executed (in order) once the script is called within
MATLAB. For example, if such a file has the name compute.m , then typing the command
compute at the MATLAB prompt will cause the statements in that file to be executed. Script
files can be very useful when entering data into a matrix.

Function files, on the other hand, play the role of user defined commands that often have input
and output. You can create your own commands for specific problems this way, which will have
the same status as other MATLAB commands. Let us give a simple example. The text below is
saved in a file called log3.m and it is used to calculate the base 3 logarithm of a positive
number. The text file can be created in a variety of ways, for example using the built-in
MATLAB editor through the command edit (that is available with MATLAB 5.0 and above),
or your favorite (external) text editor (e.g. Notepad or Wordpad in Microsoft Windows). You
must make sure that the filename has the extension “.m” !

function [a] = log3(x)

% [a] = log3(x) - Calculates the base 3 logarithm of x.

 a = log(abs(x))./log(3);

% End of function

Using this function within MATLAB to compute log 3(5), we get

» log3(5)

ans =
 1.4650

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 28

Let us explain a few things related to the syntax of a function file. Every MATLAB function
begins with a header, which consists of the following :

(a) the word function,
(b) the output(s) in brackets, (the variable a in the above example)
(c) the equal sign,
(d) the name of the function, which must match the function filename (log3 in the above

example) and
(e) the input(s) (the variable x in the above example).

Any statement that appears after a “%” sign on a line is ignored by MATLAB and plays the role
of comments in the subroutine. Comments are essential when writing long functions or
programs, for clarity. In addition, the first set of comments after the header in a function serve as
on-line help. For example, see what happens when we type

» help log3

[a] = log3(x) - Calculates the base 3 logarithm of x.

MATLAB gave us as “help” on the function we defined, the text that we included after the
header in the file.

Finally, the algorithm used to calculate the base 3 logarithm of a given number, is based on the
formula

log 3(x) = ln(|x|) / ln(3).

Since the logarithm of a negative number is undefined, we use the absolute value for “safety”.
Also, note that we have allowed for a vector to be passed as input, by using element-wise
division in the formula.

During a MATLAB session, we may call a function just like we did in the above example,
provided the file is saved in the current (working) directory. This is the reason why in the
beginning of this guide we suggested that you should create a working directory and switch to
that directory from within MATLAB.

It should be noted that both types of m-files can reference other m-files, including themselves in
a recursive way.

Exercises

Write a script m-file called rand_int.m that once called within MATLAB gives a random
integer.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 29

3.2 Loops

We will now cover some commands for creating loops, which are not only used in writing m-
files, but in regular MATLAB sessions as well. The examples that we will give will include both
situations. The two types of loops that we will discuss are “for” and “while” loops. Both loop
structures in MATLAB start with a keyword such as for, or while and they end with the word
end.

The “for” loop allows us to repeat certain commands. If you want to repeat some action in a
predetermined way, you can use the “for” loop. The “for” loop will loop around some statement,
and you must tell MATLAB where to start and where to end. For example,

>> for j=1:4
 j+2
 end

j =
 3

j =
 4

j =
 5

j =
 6

looped through the numbers 1, …, 4 and every time printed the current number plus 2.

Enclosed between the for and end, you can have multiple statements just like in the example
below. Here, we define the vector x = [1, 2, …, 10] and we calculate x2 = [12, 22, …, 102], which
we name x2. The semicolon at the end of the inner statement in the loop suppresses the printing
of unwanted intermediate results.

» x = 1:10

x =
 1 2 3 4 5 6 7 8 9 10

» for i=1:10
 x2(i) = x(i)^2;
 end

» x2

x2 =
 1 4 9 16 25 36 49 64 81 100

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 30

Even though for loops are convenient to use in certain cases, they are not always the most
efficient way to perform an operation. In the above example, we would have been better off
using

» x2 = x.^2

x2 =
 1 4 9 16 25 36 49 64 81 100

instead. There are occasions, however, where the “vectorized” notation of MATLAB cannot
help us perform the operations we want, and loops are needed despite the fact that they are not as
efficient.

Nested loops can also be created. In the following example, we calculate the square of the
entries in a matrix. (This again is not efficient but it is used for illustration purposes only.)

» A = [1,5,-3;2,4,0;-1,6,9]

A =
 1 5 -3
 2 4 0
 -1 6 9

» for i=1:3
 for j=1:3
 A2(i,j) = A(i,j)^2;
 end
 end

» A2

A2 =
 1 25 9
 4 16 0
 1 36 81

For a more realistic example, consider the m-file gaussel.m, which performs Gaussian
elimination (and back substitution) to solve the square system A x = b.

function [x] = gaussel(A,b)

% [x] = gaussel(A,b)
%
% This subroutine will perform Gaussian elimination
% and back substitution to solve the system Ax = b.
% INPUT : A - matrix for the left hand side.
% b - vector for the right hand side
%

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 31

% OUTPUT : x - the solution vector.

N = max(size(A));

% Perform Gaussian Elimination

 for j=2:N,
 for i=j:N,
 m = A(i,j-1)/A(j-1,j-1);
 A(i,:) = A(i,:) - A(j-1,:)*m;
 b(i) = b(i) - m*b(j-1);
 end
 end

% Perform back substitution

 x = zeros(N,1);
 x(N) = b(N)/A(N,N);

 for j=N-1:-1:1,
 x(j) = (b(j)-A(j,j+1:N)*x(j+1:N))/A(j,j);
 end

% End of function

To illustrate the use of the above file, we define

» A = [4 3 2 3;1 2 3 6;4 2 2 1;9 9 1 -2]

A =
 4 3 2 3
 1 2 3 6
 4 2 2 1
 9 9 1 -2

» b=[1;0;2;-5]

b =
 1
 0
 2
 -5

Since, the function does not check to see if the matrix A is invertible, we do so ourselves.

» det(A)

user
Highlight

user
Highlight

user
Highlight

 32

ans =

 -94

The solution to A x = b is given by

» x = gaussel(A,b)

x =
 1.2979
 -1.7660
 -0.0213
 0.3830

Of course, a more efficient way to solve such a linear system would be through the built-in
MATLAB solver. That is, we could have typed x = A\b to obtain the same answer. Try it!

The second type of loop is the “while” loop. The “while” loop repeats a sequence of commands
as long as some condition is met. For example, given a number n, the following m-file
(exple.m) will display the smallest non-negative integer a such that 2a ≥ n.

function [a] = exple(n)

% [a] = exple(n)
%

a = 0;
while 2^a < n
 a = a + 1;
end

% End of function

» a = exple(4)

a =
 2

The conditional statement in the “while” loop is what makes it differ from the “for” loop. In the
above example we used the conditional statement

while 2^a < n

which meant that MATLAB would check to see if this condition is met, and if so proceed with
the statement that followed. Such conditional statements are also used in “if” statements that are
discussed in the next section. To form a conditional statement we use relational operators. The
following are available in MATLAB.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 33

< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
~= not equal

Note that “=” is used in assignments and “= =” is used in relations. Relations may be connected
(or quantified) by the following logical operators.

& and
| or
~ not

Exercises

The n-by-n Hilbert matrix H, has as its entries Hi,j = 1/(i + j – 1), i,j = 1, 2, …, n. Create a double
“for loop” to generate the 5-by-5 Hilbert matrix and check your answer using the built-in
MATLAB command hilb.

3.3 If statement

There are times when you would like your algorithm/code to make a decision, and the “if”
statement is the way to do it. The general syntax in MATLAB is as follows :

if relation
 statement(s)
 elseif relation % if applicable
 statement(s) % if applicable
 else % if applicable
 statement(s) % if applicable
 end

The logical operators (&, |, ~) could also be used to create more complex relations.

Let us illustrate the “if” statement through a simple example. Suppose we would like to define
and plot the piecewise defined function

F
x if x

if x
=

− < <
≤ <

⎧
⎨
⎩

2 1 0 5
0 25 0 5 1

.
. .

This is done with the use of the “if” statement in MATLAB as follows. First we define the
“domain” vector x from –1 to 1 with increment 0.01 to produce a smooth enough curve.

» x=-1:0.01:1;

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 34

Next, we loop through the values of x and for each one we create the corresponding function
value F as a vector.

» for i=1:length(x)
 if x(i) < 0.5
 F(i) = x(i)^2;
 else
 F(i) = 0.25;
 end
 end

Finally, we plot the two vectors (using a solid black curve).

» plot(x,F,’-k’)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

As a second example, we would like to write a subroutine that takes as input a square matrix and
returns its inverse (if it exists). The m-file below (chk_inv.m) will perform this task for us,
and make use of the “if” statement. If the matrix is not square or if it does not have an inverse,
the subroutine should print a message letting us know and it will terminate without computing
anything. We will also make use of comments within the m-file to make it more readable.

function [Ainv] = chk_inv(A)

% [Ainv] = chk_inv(A)
% Calculate the inverse of a matrix A
% if it exists.

[m,n] = size(A); % compute the size of the matrix A
if m~=n % check if A is square
 disp('Matrix is not square.');
 break % quit the function
elseif det(A)==0 % check if A is singular

user
Highlight

user
Highlight

user
Cross-Out

user
Highlight

 35

 disp('Matrix is singular.');
 break % quit the function
else
 Ainv = inv(A); % compute the inverse
end

% End of function

Here is a sample run of the above program with a random 3-by-3 matrix.

» A=rand(3,3)

A =
 0.0475 0.6326 0.3653
 0.7361 0.7564 0.2470
 0.3282 0.9910 0.9826

» chk_inv(A)

ans =
 -2.4101 1.2551 0.5806
 3.1053 0.3544 -1.2437
 -2.3270 -0.7767 2.0783

It is left to the reader to see what answers other input matrices will produce.

In the above m-file, we used two “new” commands: disp and break. As you can imagine,
break simply causes the current operation to stop (exit the program in this case). The
command disp takes as input text enclosed within single quotes and displays it on the screen.
See help disp for more information of this and other text displaying commands.

As a final example, let us write an m-file called fact.m that gives the factorial of a positive
number n = 1⋅2⋅3⋅4 . . . (n – 1)⋅n, using the recursive formula n! = n (n – 1). This example will
not only illustrate the use of the “if” statement, but that of a recursive function as well.

function [N] = fact(n)

% [N] = fact(n)
% Calculate n factorial

if (n = = 1) | (n = = 0)
 N = 1;
else
 N = fact(n-1);
end

% End of function

user
Cross-Out

user
Highlight

user
Highlight

user
Highlight

 36

Exercises

1. Modify the m-file log3.m from Section 3.1, by removing the absolute value within the

logarithms (that was used for “safety”). Your function should now check to see if the input is
negative or zero, print out a message saying so, and then terminate. If the input is positive
then your function should proceed to calculate the logarithm base 3 of the input.

2. Write a function m-file called div5.m that takes as input a real number and checks to see if

it is divisible by 5. An appropriate message indicating the result should be the output.

4. ADDITIONAL TOPICS

4.1 Polynomials in MATLAB

Even though MATLAB is a numerical package, it has capabilities for handling polynomials. In
MATLAB, a polynomial is represented by a vector containing its coefficients in descending
order. For instance, the following polynomial

p(x) = x2 – 3x + 5

is represented by the vector p = [1, -3, 5] and the polynomial

q(x) = x4 + 7x2 – x

is represented by q = [1, 0, 7, -1, 0] .

MATLAB can interpret any vector of length n + 1 as an nth order polynomial. Thus, if your
polynomial is missing any coefficients, you must enter zeros in the appropriate place(s) in the
vector, as done above.

You can find the value of a polynomial using the polyval command. For example, to find the
value of the polynomial q above at x = –1, you type

» polyval(q,-1)

ans =
 7

Finding the roots of a polynomial is as easy as entering the following command.

» roots(q)

ans =
 0
 0.0712 + 2.6486i
 0.0712 - 2.6486i
 -0.1424

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 37

Note that MATLAB can handle complex numbers as well, with i=sqrt(-1). This is reflected
in the four roots above, two of which are complex.

Suppose you want to multiply two polynomials together. Their product is found by taking the
convolution of their coefficients. MATLAB’s command conv will do this for you. For
example, if s(x) = x + 2 and t(x) = x2 + 4x + 8 then

z(x) = s(x) t(x) = x3 + 6x2 + 16x + 16.

In MATLAB, we type

» s = [1 2];
» t = [1 4 8];
» z = conv(s,t)

z =
 1 6 16 16

Dividing two polynomials is just as easy. The deconv function will return the remainder as
well as the result. Let’s divide z by t and see if we get s.

» [s,r] = deconv(z,t)

s =
 1 2

r =
 0 0 0 0

As you can see, we get (as expected) the polynomial/vector s from before. If s did not divide z
exactly, the remainder vector r, would have been something other than zero.

MATLAB can obtain derivatives of polynomials very easily. The command polyder
takes as input the coefficient vector of a polynomial and returns the vector of coefficients for its
derivative. For example, with p(x) = x2 –3x + 5, as before

» polyder(p)

ans =
 2 -3

What do you think (in terms of Calculus) the combination of commands
polyval(polyder(p),1) give? How about roots(polyder(p)) ?

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

 38

Exercises

1. Write a function m-file called polyadd.m that adds two polynomials (of not necessarily the

same degree). The input should be the two vectors of coefficients and the output should be a
new vector of coefficients representing their sum.

2. Find the maxima and minima (if any) of the polynomial function f(x) = x3 – x2 –3x. Plot the

function and the maxima and minima (if any) using a ‘o’ for each minimum and a ‘*’ for each
maximum.

4.2 Numerical Methods

In this section we mention some useful commands that are used in approximating various
quantities of interest.

We already saw that MATLAB can find the roots of a polynomial. Suppose we are interested in
finding the root(s) of a general non-linear function. This can be done in MATLAB through the
command fzero, which is used to approximate the root of a function of one variable, given an
initial guess. We must first create an m-file that describes the function we are interested in, and
then invoke the fzero command with the name of that function and an initial guess as input.
Consider finding the root(s) of f(x) = ex – x2. We create the m-file called eff.m as seen below.

function [F] = eff(x)

% [F] = eff(x)

F = exp(x) - x.^2;

% End of function

A plot of the function can prove to be very useful when choosing a good initial guess, since it
gives as an idea as to where the root(s) lie.

» x=-3:.01:3; plot(x,eff(x)); grid

-3 -2 -1 0 1 2 3
-10

-5

0

5

10

15

user
Highlight

 39

We see from the above plot that there is one root between x = – 1 and x = 0. Hence, we choose
as an initial guess – 0.5 and we type

» fzero('eff',-0.5)

ans =

 -0.7035

Note that the name of the function appears within single quotes as input to the function. In
addition, don’t forget that this is a four-digit approximation to the root. This is seen from

» eff(-0.7035)

ans =

 -6.1957e-005

which is not (quite) zero. Of course, the number of digits beyond the decimal point that are
passed as input play an important role. See what happens when we change the format.

» format long
» fzero('eff',-0.5)

ans =

 -0.70346742249839

» eff(-0.70346742249839) % eff(ans) also works

ans =
 0

As expected, a more accurate approximation gave much better results.
When a function has more than one root, the value of the initial guess can be changed in order to
obtain approximations to additional roots.

Another useful command is fmin, which works in a similar way as the fzero command, but
finds the minimum of a function. The command fmin requires as input the name of the function
(within single quotes) and an interval over which the minimization will take place.

For example, the MATLAB demo function

g(x) = 1/((x – 0.3)2 + 0.01) + 1/((x – 0.9)2 + 0.04) – 6

is (already) in a file called humps.m and its graph is seen below.

 40

-1 -0.5 0 0.5 1 1.5 2
-20

0

20

40

60

80

100

We see that there is a minimum between x = 0.5 and x = 1. So we type,

» fmin('humps',0.5,1)

ans =

 0.63701067459059

to get the minimum. The minimum value of g is obtained by

» humps(ans)

ans =

 11.25275412656430

When multiple minima are present, the endpoints of the interval given as input can be changed in
order to obtain the rest of the minima.

How do you think you can find the maximum of a function instead of the minimum?

As a final command in this section, we mention quad which approximates the value of a
definite integral. Once again, the function we wish to integrate must be saved in a file and the
name, along with the limits of integration must be passed as input to the command quad.

Consider integrating f(x) = ex – x2 over the interval x = 0 to 1. Since we already have this
function in the file eff.m, we simply type

» quad('eff',0,1)

 41

ans =

 1.38495082136656

How about the integral of sin(x) over 0 to π. We know the answer in this case, and it should be
2. MATLAB knows the function sin, so without creating any m-file for it, we type

» quad('sin',0,pi)

ans =

 2.00001659104794

The answer we got is close to 2 since after all it is only an approximation. We can get a closer
approximation if we use the command quad8 instead.

» quad8('sin',0,pi)

ans =

 1.99999999999989

The command quad8 uses a more accurate technique than that used in quad, hence the better
approximation. An even “closer” approximation can be obtained if we pass as input to the
command the tolerance we wish to have, i.e. the acceptable error in the approximation. For
example, if we wish the error to be less than 10–10, we type

» quad8('sin',0,pi,1e-10)

ans =
 2

and we get the answer exactly. The tolerance was passed in scientific notation above as the
fourth input value.

 42

5. CLOSING REMARKS AND REFERENCES

It is our hope that by reading this guide you formed a general idea of the capabilities of
MATLAB, while obtaining a working knowledge of the program. Certain advantages but also
limitations of MATLAB could also be seen through this tutorial, and it is left to the reader to
decide when and if to use this program.

There are numerous other commands and specialized functions and toolboxes that may be of
interest to you. For example, MATLAB’s Symbolic Toolbox includes a “piece” of MAPLE®
(www.maplesoft.com), so that symbolic manipulations can be performed.

A good source of information related to MATLAB, the creator company THE MATHWORKS INC
and their other products is their Web Page at www.mathworks.com. It is strongly recommended
that you visit this web page to see what other publications (if any) exist that will allow you to
enhance your knowledge of MATLAB. Some are more advanced than others so do not hesitate
to talk to your professor for guidance through the (rather) long list.

Hope you enjoyed reading this guide and … keep computing ☺

MATLAB Suppport

• http://www.mathworks.com/support/

The above web page includes a link to MATLAB based books. See also

• http://www.mathworks.com/support/books/index.jsp

