
1 

 

Programming  

with   

MATLAB 
 

Edward Neuman  

Department of Mathematics  

Southern Illinois University at Carbondale  
 

This tutorial is intended for those who want to learn basics of MATLAB programming language. Even with a limited knowledge of this 
language a beginning programmer can write his/her own computer code for solving problems that are complex enough to be solved by 
other means. Numerous examples included in this text should help a reader to learn quickly basic programming tools of this language. 
Topics discussed include the m-files, inline functions, control flow, relational and logical operators, strings, cell arrays, rounding 
numbers to integers and MATLAB graphics. 
 

2.1   The m-files 
 
Files that contain a computer code are called the m-files. There are two kinds of m-files: the script files and the function files. Script files 
do not take the input arguments or return the output arguments. The function files may take input arguments or return output arguments. 
 
To make the m-file click on File next select New and click on M-File from the pull-down menu. You will be presented with the 
MATLAB Editor/Debugger screen. Here you will type your code, can make changes, etc. Once you are done with typing, click on 
File, in the MATLAB Editor/Debugger screen and select Save As... . Chose a name for your file, e.g., firstgraph.m and click on Save. 
Make sure that your file is saved in the directory that is in MATLAB's search path. If you have at least two files with duplicated names, 
then the one that occurs first in MATLAB's search path will be executed. To open the m-file from within the Command Window type 
edit firstgraph and then press Enter or Return key. 
 

2.2   Control flow 
 
To control the flow of commands, the makers of MATLAB supplied four devices a programmer can use while writing his/her computer 
code 

the for loops 
the while loops 
the if-else-end constructions  
the switch-case constructions 

 
2.3.1  Repeating with for loops 
 
Syntax of the for loop is shown below 
 
for k = array  
       commands   
end 
The commands between the for and end statements are executed for all values stored in the array. 



2 

 

 
Suppose that one-need values of the sine function at eleven evenly spaced points n/10, for n = 0, 1, … 10. To generate the numbers in 
question one can use the for loop 
 
for n=0:10 
       x(n+1) = sin(pi*n/10); 
end 
x 
 
x = 
 
  Columns 1 through 6 
 
         0    0.3090    0.5878    0.8090    0.9511    1.0000 
 
  Columns 7 through 11 
 
    0.9511    0.8090    0.5878    0.3090    0.0000 
 
The for loops can be nested 
 
 
H = zeros(5);  
for k=1:5 
    for l=1:5 
        H(k,l) = 1/(k+l-1); 
    end 
end  
H 
 
H = 
    1.0000    0.5000    0.3333    0.2500    0.2000 
    0.5000    0.3333    0.2500    0.2000    0.1667 
    0.3333    0.2500    0.2000    0.1667    0.1429 
    0.2500    0.2000    0.1667    0.1429    0.1250 
    0.2000    0.1667    0.1429    0.1250    0.1111 
 
Matrix H created here is called the Hilbert matrix. First command assigns a space in computer's memory for the matrix to be generated. 
This is added here to reduce the overhead that is required by loops in MATLAB. 
 
The for loop should be used only when other methods cannot be applied. Consider the following problem. Generate a 10-by-10 matrix 
A = [akl], where ak = sin(k)cos(l). Using nested loops one can compute entries of the matrix A using the following code 
 
A = zeros(10); 
for k=1:10  
    for l=1:10 
        A(k,l) = sin(k)*cos(l); 
    end 
end 

A loop free version might look like this  

k = 1:10; 



3 

 

A = sin(k)'*cos(k); 

First command generates a row array k consisting of integers 1, 2, ... , 10. The command sin(k)' creates a column vector while cos(k) is 
the row vector. Components of both vectors are the values of the two trig functions evaluated at k. Code presented above illustrates a 
powerful feature of MATLAB called vectorization. This technique should be used whenever it is possible. 
 

2.3.2  Repeating with while loops 
 
Syntax of the while loop is 
 
while expression 
      statements  
end 
 
This loop is used when the programmer does not know the number of repetitions a priori. 
 
Here is an almost trivial problem that requires a use of this loop. Suppose that the number 71 is divided by 2. The resulting quotient is 
divided by 2 again. This process is continued till the current quotient is less than or equal to 0.01. What is the largest quotient that is 
greater than 0.01? To answer this question we write a few lines of code 
 
q = pi; 
while q > 0.01  
      q = q/2; 
end 
q 
 
q = 
 
0.0061 
 
2.3.3  The if-else-end constructions 
 
Syntax of the simplest form of the construction under discussion is 
 
if expression commands end 
 
This construction is used if there is one alternative only. Two alternatives require the construction 
 
if expression 
    commands (evaluated if expression is true) 
else 
    commands (evaluated if expression is false)  
end 

If there are several alternatives one should use the following construction 

if expression1 
     commands (evaluated if expression 1 is true)  
elseif expression 2 
      commands (evaluated if expression 2 is true)  
elseif … 



4 

 

... 
 
... 
else 
       commands (executed if all previous expressions evaluate to false)  
end 
 
Chebyshev polynomials Tn(x), n = 0, 1, ... of the first kind are of great importance in numerical analysis. They are defined recursively as 
follows 

 
Tn(x) = 2xTn - i(x) - Tn - z(x), n = 2, 3, ... , To(x) = 1, Ti(x) = x. 

 
Implementation of this definition is easy 

function T = ChebT(n) 
% Coefficients T of the nth Chebyshev polynomial of the first kind.  
% They are stored in the descending order of powers. 
t0 = 1; 
t1 =   [1 0]; 
if n == 0 
   T = t0;  
elseif n == 1; 
   T = t1;  
else 
   for k=2:n 
      T =   [2*t1 0]   -   [0 0 t0]; 
      t0 = t1; t1 = T; 
   end 
end 
 
 
Coefficients of the cubic Chebyshev polynomial of the first kind are 
 
coeff = ChebT(3) 
 
coeff = 

4 0    -3    0 
 

Thus T3(x) = 4x3 - 3x. 

2.3.4     The switch-case construction 

Syntax of the switch-case construction is 
 
switch expression (scalar or string)  
case valuel (executes if expression evaluates to valuel)  

commands 
case value2 (executes if expression evaluates to value2)  

commands 
otherwise 

statements 
end 



5 

 

Switch compares the input expression to each case value. Once the match is found it executes the associated commands. 
 
In the following example a random integer number x from the set {1, 2, ... , 10} is generated. If x = 1 or x = 2, then the message 
Probability = 20% is displayed to the screen. If x = 3 or 4 or 5, then the message Probability = 30% is displayed, otherwise the message 
Probability = 50% is generated. The script file fswitch utilizes a switch as a tool for handling all cases mentioned above 

% Script file fswitch. 
x = ceil(10*rand);     
% Generate a random integer in {1,  2,   ...   , 10} 
switch x 
case {1,2} 

disp('Probability = 20%');  
case {3,4,5} 

disp('Probability = 30%');  
otherwise 

disp('Probability = 50%'); 
end 

Note use of the curly braces after the word case. This creates the so-called cell array rather than the one-dimensional array, which 
requires use of the square brackets. Here are new MATLAB functions that are used in file fswitch 
 

rand - uniformly distributed random numbers in the interval (0, 1) 
ceil - round towards plus infinity infinity (see Section 2.5 for more details) 
disp - display string/array to the screen 

 
for k = 1:10  

fswitch  
end  
 
Probability = 50% 
Probability = 30% 
Probability = 50% 
Probability = 50% 
Probability = 50% 
Probability = 30% 
Probability = 20% 
Probability = 50% 
Probability = 30% 
Probability = 50% 

 
 
References 
[1] D. Hanselman and B. Littlefield, Mastering MATLAB 5. A Comprehensive Tutorial and Reference, Prentice Hall, Upper Saddle River, NJ, 1998. 
 
[2] P. Marchand, Graphics and GUIs with MATLAB, Second edition, CRC Press, Boca Raton, 1999. 
 
[3] K. Sigmon, MATLAB Primer, Fifth edition, CRC Press, Boca Raton, 1998. 
 
[4] Using MATLAB, Version 5, The MathWorks, Inc., 1996. 
 
[5] Using MATLAB Graphics, Version 5, The MathWorks, Inc., 1996. 
 


